Analysis of a Split-Plot Experiment with Whole-Plot Part as RCBD

An experiment was conducted to measure the effect of two factors,

$$A = \text{row spacing}$$
 and $B = \text{plant density}$,

on a complex response variable y. The response variable is related to the relationship between a plant's leaf area and the amount of light intercepted at various levels in its canopy. Destruction of several plants is necessary to obtain a single value of y.

A field was divided into r=4 blocks. Each block was divided into two whole plots, and a=2 row spacings (38 and 76 cm) were randomly assigned to the whole plots within each block. Each whole plot was divided into four *split plots*, and b=4 plant densities were randomly assigned to the split plots within each whole plot. At a predetermined date during the growing season, the split plots were used to obtain rab=(4)(2)(4)=32 measures of the response variable. We can consider the following model for the data

$$y_{ijk} = \mu + \rho_k + \alpha_i + (wp)_{ik}$$
 (whole-plot portion)
 $+\beta_j + (\alpha\beta)_{ij} + (sp)_{ijk}$ (split-plot portion)
 $(i=1,\ldots,a \quad j=1,\ldots,b \quad k=1,\ldots,r)$

where $(wp)_{ik} \sim N(0, \sigma_{wp}^2)$, $(sp)_{ijk} \sim N(0, \sigma_{sp}^2)$, and all random effects are independent. We may partition as follows:

Whole Plot Partitioning			
SOURCE	DF	DF	
Block	r-1	3	
A	a-1	1	
W.P. Error	(r-1)(a-1)	3	
C. Total(wp)	ra-1	7	

Split Plot Partitioning

SOURCE	DF	DF
Whole Plot	ra-1	7
B	b-1	3
AB	(a-1)(b-1)	3
S.P. Error	(r-1)a(b-1)	18
C. Total(sp)	rab-1	31

W.P. Error is Block*A.

S.P. Error is the usual error term, which happens to consist of Block*B+Block*A*B.

SAS code for the analysis using *proc glm* and *proc mixed* is provided below (and in *splitplot.sas*). Output can be found on the back of this sheet.

```
proc glm;
  class block spacing density;
  model y=block spacing block*spacing
          density spacing*density;
  random block*spacing;
  test h=spacing e=block*spacing;
run;
proc mixed method=type3;
  class block spacing density;
  model y=block spacing
          density spacing*density / ddfm=satterthwaite;
  random block*spacing;
  1smeans spacing density;
  lsmeans spacing*density / slice=spacing;
  lsmeans spacing*density / slice=density;
run;
```